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Abstract. Self-interacting branched polymers interacting with a wall can be modelled by lattice
trees in a half-space with a nearest-neighbour contact-fugaatyd a visit-fugacityr conjugate

to the number of visits the tree makes to the wall (which is the boundary of the half-space). We
show that there is a limiting free energy in this model, and that it is a non-analytic function of the
visit-fugacity for every finite and fixed value of the contact-fugacity. This implies the existence

of an adsorption transition in this model, and there is a critical cafvgs) in the phase diagram

which separates the phase of desorbed trees from a phase of adsorbed trees. Moreover, we show
thate(B) > 0O for all finite values of the contact-fugacity, and the adsorption transition occurs

at a strictly attractive value of the interaction between the tree and the wall.

1. Introduction

Branched polymers in dilute solution can be modelled by lattice trees which are connected
and acyclic subgraphs of the lattice (usually the square or cubic lattice). Vertices represent
monomerdn the polymer, while edges represent the bonds between monomers. A branched
polymer in dilute solution will undergo a collapse transition if the quality of its solvent
deteriorates beyond a certain critical point, called @hgoint. The transition is an internal
rearrangement of the monomers in the polymer, which occurs when the effective attractive
interaction between the monomers overcomes the entropic repulsion (due to excluded
volume) in the polymer (Mazur and McCrackin 1968, Mazur and Mcintyre 1975). In a
lattice tree, the monomer—-monomer interaction is modelled by a fugacity conjugate to the
number ofcontactshetween nearest-neighbour vertices in the tree which are not adjacent
in the tree. This model has been the subject of numerous studies in the last couple of
decades, see for example Dickman and Shieve (1986), Lam (1988), Metdrh$1990),

Gaunt and Flesia (1990, 1991), Flesia and Gaunt (1992), Janse van Rensburg and Madras
(1996), Madras and Janse van Rensburg (1997).

In this paper we are interested in a lattice tree model of a self-interacting branched
polymer interacting with a plane. This problem has been considered for self-avoiding
walk models of linear polymers and ring polymers, see for example the papers by Finsy
et al (1975), Hammersleyet al (1982), Vanderzande (1995), Vrbivand Whittington
(1996, 19984a, 1998b), Janse van Rensburg (1998). Related results for the adsorption of
a copolymer were obtained by Whittington (1998). The scaling theory of the adsorption
transition has been reviewed by De’Bell and Lookman (1993). In the lattice tree version
of this problem we will work with bond- or edge-trees &f interacting with the(d — 1)-
dimensional hyperplang = 0.

0305-4470/98/438635+17$19.5@C) 1998 IOP Publishing Ltd 8635
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We consider two lattice trees (in general) to be equivalent if they can be made identical
by a translation. The total number of lattice trees defined in this way will be denoted by
T,, wheren is the number of edges in the trees. It is known that the limit

lim } log T, = logiy (1.1)
n—oon
exists, wherel,; is the growth constant of lattice trees (Klein 1981, Janse van Rensburg
1992). If the lattice tree interacts with the hyperplane 0, then the definition of;, must

to be changed as follows. We indicate coordinates of a vertex in a trée,by. .., 2),

where thedth coordinate will always be. Two lattice trees are equivalent if one can be
made identical to the other by a translation which leaves-athordinates unchanged (such

a translation is parallel to the hyperplane= 0). Since the trees should always be in the
vicinity of the hyperplane; = 0, we also require that there is at least one vertex in each
tree which has itg-coordinate in the sgt-1, 0, 1}; these trees will be calleattached trees

Let 7, be the number of attached trees. Notice that the growth constant of attached trees
is also given bya, in equation (1.1). Obviously;,, > T, since each tree counted ly

can be translated to intersect the hyperplane 0. On the other hand, each attached tree
can be translated in thedirection to become a tree; since at mosattached trees can be
translated to the same treg,< nT,. Thus,

1
lim —logt, = logi,. 1.2)
n

n—oo

There are two models of lattice trees interacting with the hyperptaae0. In the first

model we will confine the tree to the half-space 0, in which case we have a model of

a branched polymer interacting with an impenetrable wall. Such attached trees are called
positive treesand the number of these will be indicated 4jy In the second case we will

not confine the tree to the half-spacée: 0; this may be considered a model of a branched
polymer interacting with the interface between two liquids. In this paper we are primarily
interested irv,": the model of branched polymers adsorbing on a wall. However, we shall
also find it useful to compare these two models.

The interaction between the attached tree and the adsorbing plane is modelled by
counting the number of vertices in the tree witboordinate equal to zero. Such vertices are
calledvisits and the basic quantities in this paper willhév, ¢) andz" (v, ), wheret, (v, ¢)
is the number of attached trees withvisits andc contacts, and; (v, ¢) is the number of
positive attached trees with visits andc contacts. We introduce two fugacities into these
models. The interaction with the adsorbing plane is modelled by introducigjtgugacity
a, with o conjugate to the number of visits in the tree, and the self-interaction in the tree is
modelled by introducing aontact-fugacitys, with g conjugate to the number of contacts.

It is generally believed that there iséatransition at a critical value oB, where the tree
undergoes a collapse transition from an expanded conformation to a collapsed conformation.
We shall prove that there is an adsorption transition in these models at a critical value of
the visit-fugacity. The partition function for the model of attached trees interacting with the
hyperplanez = 0 is
Zu(@, B) =) > ta(v, )& (1.3)
v=>0 ¢=0

A model of self-interacting branched polymers interacting with an impenetrable wall is
defined by considering positive attached trees instead.

ZHe. By =Y Y 15w, c)ee. (1.4)

v=0 =0
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Figure 1. Concatenation of two positive trees. If the tree on the right is shifted two more steps
towards the left, then there will be an intersection between them. The trees are concatenated by
adding the vertexO and an edge to each tree. This may create as many/as1d(new contacts

in d dimensions, as well as an extra visitGf is in the wall. The top vertex and bottom vertex

are indicated by andb respectively.

At small (or negative) values of the parametéxs 8) we expect the trees to be desorbed

and expanded in a phase which we call the DE-phase. Increasstgpuld lead to an
adsorption into an adsorbed and expanded phase (AE-phase). Similarly, incr@asithg

give a desorbed and collapsed phase (DC-phase). In three and higher dimensions increasing
both @ and g should give a collapse and adsorbed phase (AC-phase). Available data in
directed walk models suggest that the AC-phase is not present in two dimensions (see for
example Foster 1990, Foster and Yeomans 1991, Festir1992).

In the next section we show that the limiting free energies of these models exist. In
section 3 we consider primarily the phase diagram of positive attached trees. We prove that
the limiting free energy is a non-analytic function @ffor eachg < oco. This corresponds
to the adsorption transition in this model. We then turn our attention to attached trees
interacting with a defect plane, and prove that there is an adsorption transition in that
model as well. These results prove that there are critical curves in the phase diagrams
of these models which separate the desorbed and adsorbed phases. We also observe that
the limiting free energy is independent of the visit-fugacity in the desorbed phase in both
models. A consequence is that if there is a collapse transition in these models, then the
phase boundaries separating the DE-phase from the DC-phase are straight lines. In section
4 we turn our attention to the nature of the adsorbed phase in positive attached trees. We
prove that there is a connection between the density functions of visits in the models, and
the location of the adsorption transition. This gives a proof that positive trees adsorb only
at a strictly positive value of the visit-fugacity. A second proof of this fact is given using
a different approach, and we also examine the density of excursions in the adsorbed phase.

2. The limiting free energies of adsorbing and collapsing trees

In this section we examine the limiting free energies of the models defined in equations (1.3)
and (1.4). Letz? be thed-dimensional hypercubic lattice. Thmttom andtop vertices of
a tree are its lexicographic least and most vertices.

Theorem 2.1There exist functionst; and ]-‘j such that
1
Fa(a,p) = lim —logZ, (e, B)
n—-oo n
1
Fl(a,B)= lim =logZ}(a, B)
n—-oon

forall @ < oo andB < co. Moreover,F,(«, B) and}‘j(a, B) are convex functions in both
their arguments, and are non-decreasing, continuous, and differentiable almost everywhere.
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Proof. We prove this for the model of positive trees. A similar proof will show the existence
of the limiting free energyF,(«, B). Let T; and T, be two positive trees with edges,v;
visits andc; contacts, aneh edgesp — vy Visits ande — ¢1 contacts, respectively. Translate
T, parallel to thez = 0 hyperplane until its bottom vertex has the same coordinates as the
top vertex ofTy, except for thex- andz-coordinates. Translatg, in the x-direction until

the x-coordinate of its bottom vertex is two steps bigger thanitkteordinate of the top
vertex of7;. Next translatel;, in the negativec-direction, until there is a vertex ifi, which

is within a distance of two steps from a vertexTip (see figure 1). At this point, there are
no contacts between vertices Th and in7,. Let wy in Ty andws in T, be two vertices
which are exactly two steps apart. We concatefigtand 7> by adding two new edges and
one vertex betweemw; andw,. The new vertex may be adjacent to at magtv2rtices in

the two trees, and so as many dd 2 1) new contacts may be created. In addition, if the
new vertex is in the wall, then there is also a new visit. Thus, a new treemwithn + 2
edges and) + i visits ( = 0 ori = 1) andc + j contacts { € {0,1,...,2(d — 1)}) is
created. Each distinct pair of trees will give a different outcome, therefore

1 2(d-1)

Yot et —ve—c) <Y Y h, L +ic+ ).
i=0 j=0

v1,€1

In other wordsy" (v, k) is a generalized supermultiplicative function, of the kind discussed
in Tesiet al (1997). Multiply this equation by%*4c, and sum ovepr andc. Then

1 2d-1)
Zy (@ B)Zy (. B) < [Z > e—“"-ﬁf}zntM(a, B)-
i=0 j=0

Thus, Z, (e B)/[X 1 Y% Ve ~#/] is a supermultiplicative function. In addition,
since there are at most+ 1 visits and(d — 1)n contacts in a tree,

tt if « <Oandp <0

2+ ) < et if « >0andg <0
" t+ed=Dbn if « <Oandpg >0
(DB it o 0 andp > O.

But there is a finite constank > 0 such thattt < K", thus, ZI(«, 8) is bounded
exponentially inn for all finite values ofe and 8. Thus, the claimed limit exists (Hille
1948). O

We defineF; (0,0) = logx;, wherei} is the growth constant of positive attached
trees ind dimensions. IfA; is the growth constant of attached trees/idimensions, then
the following inequalities relate and,.

Lemma 2.2)1,_1 < )»;; = Ag4.

Proof. We first prove the inequality,—1 < A}. Let 7"V be the number of trees, counted
up to translation, in théd — 1)-dimensional lattice defined by the hyperplane- 0. Let

T be one of these trees. Then we can add an edge at any verfexnahe z-direction to
create a positive tree. if vertices are added to the tree in this way(fn ways, then

n @-1 +
(k) Tn < tn+k'
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Figure 2. The hypothetical phase diagram for adsorbing
+ and collapsing positive attached trees in three and more
al(B) dimensions.

Let k = |en] in this, take the 1n-power, and lek — oo. This gives

(A
e€(l—e)d-9

The factor in the square brackets is equal to its maxingim 1/} ) whene = 1/(1+1)).
This proves the inequality.

On the other hand, each attached tree counted, lpan be translated normal to the
planez = 0 until it is a positive tree. Since at mostsuch trees can be translated to the
same positive tree, we find that <z, < nr", and by equation (1.2) we get the equalify.

} ha—1 < AJ.

Non-analyticities in the free energy will signal thermodynamic phase transitions in the
models above. In particular, we expect critical lines in the phase diagram which correspond
to a collapse transition (these are th@oints), and to an adsorption transition. Theoints
are believed to be tricritical, and & = 0, then the singularity i, (0, 8) is expected to
have the general fornf, (0, ) ~ | — B.|>"* (wherep. is the critical value of thg and
oy is the specific heat exponent associated with@Heansition). More generally, it is not
unreasonable to expect that thdransition will occur for all values of the visit-fugacity
corresponding to a phase of desorbed trees. In three and higher dimensions we can also
expect a line of-points corresponding to collapse transitions, but, in analogy with walks,
this should not be present in two dimensions (Foster 1990, Foster and Yeomans 1991, Foster
et al 1992). The phase diagram for adsorbing and collapsing trees is presented in figure 2,
and is similar to the diagram proposed for walks and polygons (\&kemwd Whittington
1996, 19984, b, Janse van Rensburg 1998).

3. The phase diagram of adsorbing and collapsing trees

In this section we examine the proposed phase diagram in figure 2 more closely. In the
first instance we will prove below that there is an adsorption transition in this model at a
critical visit fugacitya = o (8) for any 8 < co. Secondly, the critical curve between the
DE-phase and the DC-phase is a straight line. We shall see that if we assume that there
is a collapse transition g8 = g for any (one)a < 0O, then there is a collapse transition

atp = B for all @ < 0 (theorem 3.1). If we also assume that(B) is continuous at

B, then there is a collapse transitionft= g for all « < «f (B) (theorem 3.4). These
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results justify some of the features in the phase diagram in figure 2. The existence of an
adsorption transition at = o} (8) is shown in theorems 3.2 and 3.3.

If « = 0 in F;(a, B), then we have a model of self-interacting positive trees.
Arguments similar to those preceding equation (1.2) show that) < 7(c) < nt™(c)
(wheret(c) =", 1,(v, ¢), etc), with the result that

Fi (0, B) = Fu(0, B) = Fu(B) (3.1)

whereF;(8) is the limiting free energy if a model of self-interacting lattice trees (see Janse
van Rensburg and Madras (1996) and Madras and Janse van Rensburg (1997) for numerical
results on the collapse transition in this model).

Theorem 3.1For every value off < oo, the limiting free energyF; («, p) is independent
of & for all @ < 0 (that is, 7 («, B) = F4(B) for all « < 0).

Proof. Consider any positive attached tree witlvisits andc contacts. Such a tree can be
translated one step in thedirection to find a positive attached tree with zero visits, and
¢ contacts. Thus, (v, ) < #7(0,¢). Use this, and the fact that < 0, in the following
string of inequalities:

Zz,j(o, )€ < ZF(a, B) < Zt,j(o, o)t Ly Zr,j(o, o).
Take logarithms, divide by and letn — co. This shows that there is a limiting free energy

F4(B) = F;F (0, p) for a model of self-interacting trees, and tif&f (o, 8) = F,(B) for all
a < 0. O

Suppose now that there is a collapse transition in this modgl &t g+ for a given
a < 0. Then theorem 3.1 implies that there is a collapse transitigh=at3; for all values
of « < 0; the critical curve ob-points 8 («) is a straight line for alv < 0. Theorem 3.1
also suggests that there may be an adsorption transition in this model. Bjriee ) is
a constant function of < 0, we only need to show that it is a hon-constant functiow of
for some value ofr > 0 to prove that it is a non-analytic function af

Lemma 3.2Fora > 0
maxF,(B), Fa—1(B) + a} < Ff (o, B) < Fu(B) + cv.

Proof. SinceZ; («, B) is a non-decreasing function ef we haveZ; (0, B) < F, («, B),
for all positivex. By picking out only those terms in the sum Bf («, ) with v =n +1,
we have a completely adsorbed tree (thererfré? (c) such trees withr contacts in(d — 1)
dimensions) and

Z t’gd_l) (c)eot(n-i-l)-i-ﬁc < Z’-Z‘r (a’ ,3)

c

If we take logarithms of the above, divide byand letn — oo, then we obtain
Fa-1(B) + a < Ff (a, B).

The upper bound is obtained by noting that the maximum value fn + 1, and that
a > 0. Thus, putv =n + 1 in € in equation (1.4), then

ZH@. p) <N 1)

The bound follows on taking logarithms, dividing yand lettingn — oo. d
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Notice that
FF(0,0) = F4(0,0 = F4(0) = log Ay (3.2)

by equations (1.2) and (3.1). The lower bound&f(e, B) in lemma 3.2 indicates that the
free energy becomes dependentdior some value of (indicated byx ' (8)) in the interval

[0, F4(B) — Fa—1(B)]; there is a non-analyticity it (o, B) in this interval. The density

of visits in positive trees is zero if < «f(8). This we see by noting thajo—t}‘j(a, B)=0

for all finite 8, and alle < o (B). SinceF («, B) is convex ina, the density of visits is a
non-decreasing function, and moreover if- . (8), then the density of visits is non-zero.

In other words, a non-zero fraction of the vertices in the polygon is adsorbed in the wall,
and we can refer tef (8) as the critical fugacity of the adsorption transition. In theorem
3.3 we derive some bounds on the location of the critical visit-fugacity.

Theorem 3.3The limiting free energy of self-interacting positive trees interacting with a
surface,F; («, B), is a non-analytic function of for every value ofg < co. Moreover,
the phase boundary () is in the interval [Qlogi, — %Iogkd,l] if B < 0 and in the
interval [0, logA; —logiys_1+ (d — DB]if B > 0.

Proof. From theorem 3.1 and lemma 3.2, and from equation (3.2), for e§etyoco there
must be a non-analyticity itF; («, B) at

ot (B) = supe|F; (o, B) = Fa(B)}.

In addition, the location ofxf(B) is in the interval [0F,(B) — Fa—1(B)]. If B > O,
then the maximum number of contacts in the tree(ds— 1)n, so that we note that
ZH0,B) < X tF(0)ed~ VB = t+eld=Dbn Thus, F,(B) < logrs + (d — 1)B. In addition,
ZHO0,B) = > .tf(c) = tF. Thus, Fy_1(B) > logir,_1. These bounds give the result if
B = 0. Thus,F4(B) — Fa-1(B) <logrs —l0gArs-1+ (d — DB.

If B <0, thenZ(©0,B) = Y. 170, c)e’ < t}, so thatF,(B) < logrs. On the
other hand, if every edge in the trees countedspyis subdivided, ther,” < ¢, (0),
since the resulting trees will have no contacts. Th#g,0, 8) > ¢ (0) implies that

Fa-1(B) = % logAs_1. This completes the proof i < O. O

We can now show that the critical curve separating the DE-phase and the DC-phase
is independent ot for all values ofa < «f(8), provided thatx(8) is a continuous
function of 8 at 8 = 8. In other words, the critical line of collapse transitions is a straight
line for all values ofe < «.(B}). This observation justifies the straight line of collapse
transitions separating the DE-phase from the DC-phase in figure 2.

Theorem 3.4Assume thatF; (0, B) is singular at8 = g, and that the phase boundary
af (B) is continuous at8 = BF. Then F, (, B) is singular atp = B for every
a <ol (Bh).

Proof. Let ¢ > 0 and choose, by

aq < infla(B)IB € [B — € B +el).
Since F; («, B) is analytic for all suchy,, as long a8 # B andB € [BF — ¢, B + €],
we conclude thatF; (aq, B) = F; (0, B) for B € [BF — €, B+ + €] (if this is not so, then
we will have a phase boundary @t,, 8;) with 8} some point in B — €, B + €]; this is
a contradiction). By taking small we can choose, to approachx.(8;), and the result
follows. ([
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We can now show that the free energy and the critical curves of the model of attached
trees interacting with a defect plane satisfies the same bounds as above. In theorem 2.1 we
proved that there exists a limiting free energy in this model. Sifice, ¢) < #,(v, ¢) for
each value ofz, we have that

Fie. B) < Fulet. B). (3.3)

In addition, we will see in theorem 3.5 tha}, («, 8) = F,(0, B) for all fixed 8 anda < 0.
That there is an adsorption transition in this model as well is seen by finding a lower bound
on F,(a, B) for positivew, as we did in the case of positive trees in theorem 3.3.

Theorem 3.5The limiting free energy of attached trees is a non-analytic function of
a for every fixed 8 < oo, and the phase boundawy,(8) is bounded bya.(8) €
[0,log s — 10gAs_1] if B <0 ande.(B) € [0, logrs —logirs_1 + (d — DB if B > 0.

Proof. We first show thatF, («, 8) = F4(0, B) for all fixed 8 < co anda < 0. By equation
(3.3) and theorem 3.1, we note tha}(8) = ]—'j(a, B) < Fula, B) < Fu4(0, 8) = Fu(B).
Thus

Fala, B) = Fa(B) for all o < 0.

On the other hand, & > 0, then by only retaining terms i@, («, 8) with n visits, we get
> ta(n, )& tPe L 7, (o, B). This implies thatF,_1(8) + o < Fu(e, B), and fora large

enough,F,(a, B) > F4(B). In other words, for eacl8 < oo there is a non-analyticity in
Fa(a, B). Let the critical curve in this model be.(8):

ac(B) = supalFa(a, B) = Fa(B)}-

The critical curve is in fact in the interval given by<Q . (8) < Fu(a, B) — F4_1(0, B),
and the same arguments in the proof of theorem 3.3 can be used to find the bounds claimed
above. O

4. The location of the adsorption transition

In this section we prove that positive attached trees adsorb at a critical fugddify >
a.(B) = 0for B € (—oo, 00). In particular, we will prove that there exists a non-increasing
function K (8) > 0 such that

al (B) —ac(B) > K(B) > 0. (4.1)

The proof will rely on the use oflensity functions The essentials are reviewed in
appendix A.

4.1. The density of visits

Let 7,7 (len], ¢) be the number of positive attached trees wiigi| visits andc contacts.
Thene is the density of visits as a fraction of the number of edges in the tree. Obviously
€ > 0, and maxe} = (n + 1)/n, so that we should considere [0, 1] asymptotically. The
partition function of positive attached trees with a densityf visits is

Zi(len). ) =Y tF(len]. )€ € €0, (n+1)/n]. (4.2)
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Concatenation of these trees as in the proof of theorem 2.1 gives

2(d-1) 1
Z5 (len), BYZ} (Lem], B) < [ > e—ﬂf] D 2t allen] + Llem] 4+, B). (4.3)
j=0 i=0

Comparison of equation (4.3) to equation (A.3) and theorem A.1 proves the following
lemma:

Lemma 4.1 There exists a density functidd™ (e¢; B) for every finite value of3, defined by
1
logP*(e; B) = F'(e; B) = lim =log Z (len], B) e €[0,1].
n—oon

Moreover, logP ™ (¢; B) is concave ire and convex ing for 8 € (—oo, 00).

The concavity in lemma 4.1 follows from theorem A.1, and the convexity is a
consequence of the Cauchy—Schwarz inequality:

ZH(lenl, BOZ} (Lenl, B2) = [Z; (Len], (1 + B2)/2]>. 4.9

In addition, P*(¢; B) has a dual character: in the first instarf@é(e; B) is the density
function of visits, andF"(¢; 8) = logP*(¢; B) is the free energy of a model of self-
interacting positive attached trees at a contact fugagitsgnd with a fixed density of visits
equal toe. The connection to the free energy of theorem 2.1 is through the Legendre
transform in theorem A.2:

logP*(e; B) = 7ooinf Oo{]—'J’(ot, B) — ea}
F*(a, B) = supflogP*(e: B) + ea}.

O<e<l

From theorem 3.1 and equation (3.1) lemma 4.2 follows.

(4.5)

Lemma 4.2.
Ii@logP*(é; B) =F(0.B) = F(B).

In the adsorption model in this paper there is an important connection between the
critical curvear (8) of adsorbing positive attached trees and the density fun@iog; 8).
Notice that for every fixed and finitg, logP*(¢; B) is concave for € [0, 1], and so has
a right derivative everywhere i0, 1). We redefine

logP*(0; B) = Ii@)log Pt (e; B) = suplogP " (¢; B) = F(B). (4.6)
In that case, lo@* (¢; B) has a right derivative at = 0 as well. The fact that the supremum
of logP*(e; B) is equal to logP* (0; B) follows from ¢, (v) < £ (0).
Lemma 4.3.The critical curve of adsorbing positive attached trees is given by

+ d* +
al (B) =—|=—I1ogP"(e; B)

de

Where$ is the right-derivative, and where we evaluate the right-derivative=atd. Since
af (B) is finite for every finiteg, logP* (¢; B) has a finite right derivative te ate = 0.

e=0

Proof. Redefine logP*(0; B) as in equation (4.6), then |6 (¢; B) has a right derivative
ate = 0. Let Q(¢) = logP*(¢; B) + €. By equation (4.5),F " («, ) = Sug_._, Q(¢).
Moreover, Q(¢) is concave, and its right derivative at= 0 is

dt+ dr
[—Q(e)i| = |:— Iog77+(e;ﬂ)i| + a.
de 0 de

e=0
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L]

Figure 3. This attached tree has seven visits to which we may add an edge in the negative
z-direction to find an attached tree. If we add edges only on non-adjacent visits, then no new
contacts are created.

L J

If a < —[% log P (¢; B)]e=o, thenQ(e) is strictly decreasing, and its supremum is achieved
ate = 0, so thatF*(a, B) = logP*(0; B) = F(B) by lemma 4.2. On the other hand, if
o > —[% log P (e; B)lc—o, then Q(e) is strictly increasing in an interval [@.) for some

€. > 0, and Q(¢) has a global maximum at somee > 0. Then equation (4.5) indicates
that 7+ (a, B) = logP* (€1, B) + 1 > logP* (0, B) = F(B). In other words, there is a
non-analyticity inF+ (e, ) ata = —[9-logP* (€; B)]c=o. O

We can use similar arguments to those in lemma 4.3 to show that the result for adsorbing
attached trees is analogous.
Lemma 4.4 The critical curve of adsorbing attached trees is given by
d+
o.(B) = — [—

de 0
Sincea.(B) is finite for every finites, P(e¢; B) has a finite right derivative te ate = 0.

logP(e; ﬂ)}

In addition to lemma 4.3 and 4.4, we can use equation (3.3), lemma 4.2 and the definition
of the derivative to show the following.

Theorem 4.5For every finite value of,
1
al () —ac(f) =& 7P lim =(P(e. B) = P*(e. B)).

We can compare the critical curves in these models if more could be shown about the
density functions. This is the next step in the proof #at{s) > 0. We will find a lower
bound of the right-hand side in theorem 4.5.

4.2. A relation betweef (e, B) and P (e, B)

Consider a tree counted by (|en], ¢) (see figure 3). These are all positive attached trees,
and we can change them into attached trees by adding new edges in the negéthation

on the visits. However, we cannot add edges on adjacent visits: this will increase the
number of contacts, and complicate the discussion. Instead, we will choose from those
visits whose coordinates add to either an odd number, or to an even number (whichever is
more), in each tree. This means that we will have at I¢asf2] visits to choose from. If

we choose dn| visits from |en/2] visits, then

len/2]
( [6n]

Multiply this by €°¢, sum overe, take the ¥nth power, and let — oc:

(e/2)</?
|:8‘3(e /2 — 8)</2-d

)f;r(LE'lJ, ¢) < tygon) (Lend, o). (4.7)

€ 1+68
}7?*(6; B) < [P(m; ﬂ)] . (4.8)
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Notice that the free energy of collapsing trees is given by
F(B) = suplogP(e; B) = logP(e€; ). (4.9)

We may therefore write (4.8) as

(e/z)e/ze—SF(ﬂ) N €
55 s s B) < —B)- 4.10
[35(6/2—3)6/25 Prep sP 5P (4.10)
The factor in square brackets is a maximum if
€/2
§ = T3 ® (4.12)
in which case (4.10) becomes
1 —F(B)\e/2p+ : < L; ) 4.12
(1+e )7’(6/3)7’1+8ﬁ (4.12)

Thus, we obtain the following lemma.

Lemma 4.6.The density function of visits in self-interacting positive attached trees, and in
self-interacting attached trees, are related by

—F(B)Ne/2t (. € .
1+e )P (G,ﬁ)ép(—1+(sal3>

where F(B) is the free energy of trees with a contact fugacity.

The result in lemma 4.6 can now be used to show that positive trees adsorb at a strictly
positive value of the visit-fugacity.

Theorem 4.7For every finite value of,
al (B) — a(B) > 3logl+ &) > 0.
Proof. From theorem 4.5 and lemma 4.6 we note that
1 P B)
FB) —a(B) = eTPPO, B)lim = (1— = (14 e T B)=e2 A
ol (B) — cc(B) P /3)61\06( P e (A)

where we used lemma 4.2, and whéris given by equation (4.11). ¥ > 0 is given, then
we can find am > 0 such that (ifP’(0; 8) < 0)

PO; B) +e(1+mP'(0; B) < P(e: B) < P(0; B) + (1 —mP'(0; B)
where we can take — 0 of ¢ = 0, and whereP’(0; 8) is the right derivative ofP(¢; B) at

¢ = 0. These bounds can now be used to show that there exists a finite ngn{bessibly
dependent om), such that

P(ﬁ;ﬂ)<l_6<2 8)7?’(0;;3) 2

P(e: B) "Mivs) Pop T
Notice thatP’(0; 8) < 0, and thats < ¢/2 in equation (4.11). Thus,

P15 8) <1-2 P'(G; B) <2_ 7”(0;,3)>€2_

X

€
Ple: ) ) 2P(0; )
Substitute this last bound in equation (A), simplify and take the limit. This gives
_ P'(0; B)
HB) —a(B) = tlogd+e 7Py 42 .
o, (B) —ac(B) = 5109(1+ )+ nP(O;ﬁ)
We can now safely takey N\, O to finish the proof. IfP’(0; 8) = 0 then we use
P(e; B) = P(0; B) + O(e?) instead. 0

Choosek (8) = 3 log(1 + e 7®) to find equation (4.1).
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*—8

: : :
[o] o V]

Figure 4. A positive tree with 11 visits, 10 roots and two excursions. By appending the broken
edges, and translating the entire tree one step inztligection, we obtain a tree with three
visits and three roots.

4.3. Roots

Those maximal subtrees with every edge (but not every vertex) in the half-spa€eare
calledexcursions A maximal subtree which is completely contained in the wa# 0 is an
incursion The edges of an excursion which are incident with visits are catlets In this
section we will see that there is a density of roots in a tree, if there is a density of visits.

Let ¢} (v, ¢, r) be the number of positive trees withvisits, ¢ contacts and- roots.
Thenv > r andr of the v visits are incident with a root. Since we are interested in trees
with a density of visits and of roots, we define the density function

Pt (e; B; p) = limsup Z; (Len]; B; Lon )" (4.13)
where
Z5(lenl; B; Lpn]) = ) 1 (Len], c, Lon ))& (4.14)

c=0
is the partition function of a model of interacting trees wi#x | visits and| pn ] roots, and
where the density function is only defined as a lim sup (concatenation of attached trees will
show thatP™* (e; B; p) exists as a limit, but that is not essential in the arguments below).
We illustrate a tree counted by (v, ¢, r) in figure 4. Choosen of the visits and append
m edges in the-direction; after translating the tree one step in thdirection, these edges
will be roots. Thus

2(d—1ym
v + + .
(m) t;(v,c,r) < ,-Ezo trm(m, c+i,m) (4.15)

since each of the: new vertices may have as many ad 2 1) contacts. Multiply equation
(4.15) by €° and sum over; this gives a relation between the partition functions:

2(d—1)m
(;) ZHw; Bir) < [ X(; eﬂ'}ZLm(m;ﬂ;m). (4.16)
Letv = |en], r = |pn] andm = |dn], wheree > p ande > §. Take the In power of
the resulting equation, and let— oco. This gives

66

83 (e — §)<
and sinceP™ (e; B; §) < €@ we finally obtain
€ .. syt (8 a8
_ < e — B, — 4.18
56(6—3)6_57) (€585 0) < 9(B) P (1+3 B 155 (4.18)
where¢ (z) = max{1, e 2%}, and having used equation (4.6).

n s N 8 8 1+§
PT(e; B p) < P(B) [P <1—+8;/3; m)} (4.17)
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Theorem 4.8For everye > 0 in (0, 1] andp € [0, €]
L+ ¢(B) e P)P (e B p) < PT84 B3 82

where

8 ) and 8 ¢
= — = < €
143 1+ ¢(B)e”®

Proof. Write equations (4.17) and (4.18) in the following form:
ep(p) e AR 8
— T ;B p) < — b
5 —3)e Pr(e;Bip) <P 1+5ﬂ1+5
The maximum of the left-hand side of this inequality is obtained whee ¢/(1 +
P (B)e” ). U

An immediate consequence of theorem 4.8 is th&B) > 0, for all finite 8. To see
this, suppose that > «.(8), so that there is a density of visits. Then theorem A.2 implies
that there is o, > 0 and ane, > 0 such that

F (e, B) = 10gP* (ex; B; ps) + €xx = l0gP " (8, B; 8.) + s (4.19)
wheres, is defined in theorem 4.8. On the other hand, by theorem 4.8,

(€x—3x)
log(P* (e.: B: p.)E*) < log (P*(S*; B: 8.)€ [ea X D (4.20)

where A = (1 + ¢(B) e 7®)s. This is a contradiction if €+—%) < A. Let$, = ye,
wherey < 1, then this implies that the above is a contradiction if

o<

1
T oo+ o (B) e " P (4.21)
-y
unlesse, = 0, in which case we are in the desorbed phase. But the(B) >
ﬁ log(1 + ¢(B)te7®) > 0. In other words, by examining the density of roots, we
obtained a proof that the adsorption occurs at a strictly positive valae fafr all finite 8.

4.4. Roots in adsorbed trees

In this section we show that there is a density of roots in adsorbed trees if the contact-
fugacity is 8 = 0. The construction does not work if the contact-fugacity is switched
on. This partial result indicates that the adsorbed phase along the O axis in the
phase diagram is dominated by adsorbed trees with a density of roots and visits (incidently,
this construction will also show that there is a density of excursions, since each newly
constructed root will also be an excursion). The construction is illustrated in figure 5. In
the first step of the construction we subdivide every root. Once this step is completed, we
can safely add roots to visits which do not already have a root, without creating cycles in
the trees. Sincg = 0, any contacts lost or made are irrelevant; we just sum over those.

In an adsorbed tree with visits andr roots, we can choose < v — r visits for the
construction of new roots. The new tree will haveisits, m +r roots ancn +m edges; we
sum over all contacts, so the number of those are irrelevant. This gives a relation between
the partition functions

(” - ’) ZF ;0 r) < Z7F,, (0 0y m + 7). (4.22)
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Figure 5. Construction new roots in an absorbed tree. The construction has two steps: first
subdivide the roots; this creates room for the construction of roots on visits which are not
incident with a root yet. Second, choose some visits from the set of visits not incident with a
root, and construct new roots on those.

If we choosev = |en], r = |pn], andm = |nn], and use the fact thaf*(0) = log iy,
then after taking the /uth power of equation (4.22), and takimg— oo, one obtains

(e —p)"20," € .p+n>
(e —p =) 1+n " 14n)

:| Pt(e; 0, p) < PF < (4.23)

The factor in square brackets is a maximuny i (¢ — p)/(1+ Ay), in which case

1+ 2he
%7”(6; 0, p) <P* ( < .o H—p> : (4.24)
L+ 2" 1+n " 140
This gives the following theorem if we chooge= 0.

Theorem 4.9.

1+ A7H¢Pt(e: 0: 00 < Pt € ;O;L

wheren = €/(1+ Ay).

We cannot yet fruitfully use theorem 4.9, the main problem is that the density of visits
changes, which makes explicit calculation difficult. Instead, we first show that the density
of visits can be increased in a density function without giving up too much:

Lemma 4.10.

4+ 0 146
+ -0 < + € -0 .
PT(e;0; p) [7’ <1+5, ,1+8)}

Proof. Let ./ (v, r) be the number of positive trees withvisits andr roots. Lett be
the lexicographic most visit in a tree, and aglcedges in the first direction in the= 0
hyperplane ta one by one. This generates a tree with ¢ visits andn + g edges, while
there are still- roots. Letv = |en]|, r = |pn] andg = [8n]. Take the ¥n power and let
n — oo. This gives the result above. ]

Combining lemma 4.10 with theorem 4.9 (and using the fact fhate; 0; p) < Ay)
shows that

—Iepti . O s+ (.. 0 n
A+ 2;H)PH(e: 0,0) < AP (e,o, (1+n)(1+8)> (4.25)

where we have put

b= T oaTh e (4.26)
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But n = ¢/(1+ 1,) in theorem 4.9, so that
T .
P 0,00 < 4 p+ <e; 0; ) . 4.27
(14 r he Q+2)Q+ 62+ n) (4.27)

But for ¢ small enough (but not zero!) this implies thAt (e; 0; 0) < P*(e; 0; ') for
somee’ > 0. In other words, if the supremum in equation (4.5) is realized at a small
value of ¢, then there is a density of roots in the adsorbed phase. Incidentally, since the
roots we construct in figure 5 are also excursions, this implies that there is also a density of
excursions. This argument does not work if we include the contact-fugacity; the construction
in figure 5 destroys too many contacts, and we cannot prove theorem 4.9.

Lastly, notice that if we multiply both sides of equation (4.27) with e (1 + A;l)f,
then by takinge small enough we find thaP+ (e; 0; 0)e*¢ < P*(e; 0; ') < PH(0; 0; 0).
Thus, F*(a, 0) < F*(0; 0). This is a contradiction, unless= 0, which means that we
are in the desorbed phase. Thug,0) > log(1 + A;l).

5. Conclusions

In this paper we considered the phase diagram of a model of collapsing and adsorbing trees.
In particular, we paid attention to the existence and properties of a critical eyrye)
which corresponds to an adsorption of the tree onto a wall, whdsea contact fugacity.
We showed thatv (8) < oo, so that there is an adsorption transition for any value of the
contact fugacity. Our most important result states #ja¢8) > 0 for all 8 € (—o0, 00),
and we conclude that the adsorption occurs at a strictly attractive value of the interaction
between the tree and the wall.
We also showed that there is a critical curvg(8) in the phase diagram of trees
interacting with a defect plane. We proved tha{s) > 0, and that it is finite for all values
of B, which means that the adsorption occurs for any value of the contact fugacity. We
proved thatr.(8) < ot (B); this implies that these trees adsorb onto the defect plane before
positive trees adsorb onto the wall. There are indications from other models. tifat= 0,
at least forg = 0, but a proof of this fact is not known, and is a major outstanding issue.
The phase diagram in figure 2 proved to be similar to the phase diagram of collapsing
and adsorbing walks, with four phases (presumably) present in three and higher dimensions
(we know that there are at least two). If there is a collapse transition, then the phase
boundary separating the expanded-desorbed phase from the collapsed-desorbed phase is a
straight line, but it seems that this does not persist into the adsorbed phase. It remains a
difficult challenge to show that there is a collapse transition in this model.
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Appendix

In this appendix we examine the relationship between limiting free energies and density
functions. LetT, (k) be the number of trees with edges and counted with respect to some
property which occurs times in each tree (such as the number of contacts, or the number of
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visits, etc). We assume tha} (k) > 0 if a, < k < b, and define:,, = liminf,_ . (a,/n)
andey = limsup,_, .. (b,/n). The partition function of this model is

Zy(e) =Y T,(k)e. (A1)

k=0

Suppose thaf;, (k) satisfies a supermultiplicative inequality of the following form:

q
D Tk Tk —ke) < Y v p(k +1) (A2)

ki<k i=—q

for some constantg and p. If we putk = |en| + |em]| andk; = |en] in equation (A.2),
then

q
To(len)Tu(lem]) < ) Topmsp(len] + Lem] +1). (A-3)

i=—q

The following theorem was proven by Testi al (1997).

Theorem A.1.(Theorem 4.1, Tesi et al (1997)There exists a functiofP(¢), log-concave
in [e,, €], such that

lim [T, (Len D] = P(e).

The functionP(¢) is called adensity functionand it is the density of the property
counted byk in T, (k) in then — oo limit.

From equation (A.2) we note that the limiting free energy also exists in this model; in
particular, of we multiply equation (A.2) by*¢ and sum ovek, then

q
Zn—p(ak)zm—p(ak) < |: Z eplkli|zn+m—l7(ak) (A-4)
i=—q
so that
.1
Flay) = lim — |Og Z, (o) (A5)
n—-oon
exists, and is a convex function @r-oco, co). An important relation between the logarithm

of the density function and the limiting free energy is that they are Legendre transforms of
one another.

Theorem A.2(Madras et al 1988

F(ap) = sup {logP(e) + eay}

€n<ESEY

logP(e) = o inf  {F(ax) — eay}.
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